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A Comparitive Study Of Kalman Filter, Extended 
Kalman Filter And Unscented Kalman Filter For 

Harmonic Analysis Of The Non-Stationary Signals 
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Abstract –– The accurate measurement of harmonic level is essential for designing harmonic filters and monitoring the stress to which the 

communication devices are subjected due to harmonics and specifying  digital filtering techniques for phasor measurements .  This 

paper presents an integrated approach to design an optimal estimator for the  measurement of frequency and harmonic components of a 

time varying signal embedded in low signal-to noise ratio. This led to the study of Kalman, Extended Kalman and Unscented Kalman filter 

characteristics and a subsequent implementation of the study to design these filters. We have employed the Extended Kalman filter and 

Unscented Kalman filter algorithms to estimate the voltage magnitude in the presence of random noise and distortions. Kalman filter being 

an optimal estimator to  track the signal corrupted with noise and  harmonic distortion quite accurately. Tracking of harmonic components 

of a dynamic signal in communication system can easily be done using EKF and UKF algorithms  and their results are compared. 

Keywords— Kalman filter, extended  Kalman filter, Unscented Kalman filter, Unscented transformation, Harmonic Analysis, Non-stationary 

signals,guassian random variable. 

——————————      —————————— 

1.INTRODUCTION                                                            

The problem of estimating frequency and other 
parameters of sinusoidal signal in white noise in radar, 
nuclear magnetic resonance, power network etc, have been 
extensively studied. Among   the several methods for 
frequency, amplitude and phase estimation of non-stationary 
signals, Discrete Fourier Transform (DFT) and Fast Fourier 
Transform (FFT) are widely used. However  both the  above 
methods suffer from aliasing ,leakage and picket fence effects 
and hence need error compensation and adaptive window 
width .Some of the known signal processing techniques like 
artificial neural networks  ,linear prediction technique 
adaptive filter, supervised   Gauss-Newton algorithm ,least-
error square and its variants, extended Kalman filters, have 
been used for time-varying signal parameter estimation. Most 
of these algorithms require heavy computational outlay and 
suffer from inaccuracies in the presence of noise with low 
signal to noise ratio (SNR). 
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Almost all the real time functions are non-linear 
and all the systems can be represented as discrete time 
system to a great extent of accuracy using very small 
time steps. Now the problem is to estimate the states of 
this discrete-time controlled process and the process is 
generally expressed with the help of linear stochastic 
difference equation. This estimation can be easily and 
accurately done by the Kalman Filter. 

But when the process and the measurement 
system are non-linear EKF and UKF are implemented. 
A KF that linearizes about the current mean and 
covariance using any linearizing function is called 
EKF. In this the partial derivatives of the process as 
well as measurement functions are used to compute 
estimates in the presence of non-linear function.   

In this paper, section2 deals with the kalman filter  
 algorithm , section 3 deals with the Extended  kalman filter  
algorithm, section 4 deals with the unscented kalman filter, 
section 5 deals about the comparison of KF,EKF,UKF 
estimation  approaches and section 6 deals about the 
estimation of harmonics using EKF,UKF methodology and 
simulation results and section 7 deals about conclusion. 

 

2. Kalman Filter  

It is the Optimal solution for linear-Gaussian case. 
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Now we are going to made an Assumptions are State model is 
known linear function of last state and Gaussian noise signal, 
Sensory model is known linear function of state and Gaussian 
noise signal and Posterior density  function is Gaussian. It’s 
Used to provide the closed form recursive solution of 
estimation of linear discrete time dynamic systems 
State model is considered as linear model and expressed as  
 

XK=AK-1 XK-1+qK-1 
YK=HK XK+rk 

 
Kalman Filter Uses linear transformation and has following 
steps are Prediction step-next state of the system is predicted 
for previous measurement and Update step-current state of 
the system estimated from the measurement at the step.  
  

 The Kalman Filter is an algorithm to 

generate estimates of the true and calculated values, first by 

predicting a value, then calculating the uncertainty of the 

above value and finding an weighted average of both the 

predicted and measured values. Most weight is given to the 

value with least uncertainity. The result obtained by this  

method gives estimates more closer to true values. 

 

2.1 Kalman Filtering Algorithm 

The Kalman Filter estimates a process by using a 
feedback control like form. The operation can be described as 
the process is estimated by the filter at some point of time 
and the feedback is obtained in the form of noisy 
measurements. The Kalman filter equations can be divided 
into two categories: time update equations and measurement 
update equations. To obtain the a priori estimates for the next 
time step the time update equations  project forward (in time) 
the current state and error covariance estimates. The 
measurement update equations get the feedback to obtain 
an improved a posteriori estimate incorpoating a new 
measurement into the a priori estimate. 

2.2 Underlying Dynamic System Model 

KF is based on linear and non-linear dynamical 
systems discretized in the time domain. A vector of real 
numbers represents the state of the system. At each discrete 
time increment, a new state is generated applying a linear 
operator, with some noise added. Then, the observed states 
are generated using another linear operator with some added 
noise usually called as the measurement noise. 

To use the KF to get estimations of  the internal states 
of a process where only a sequence of noisy observations are 
known as inputs, the process is modelled   in accordance 
with the state space representation of the Kalman filter. It 
means specifying the following matrices: the state- transition 
model, the observation model,  the covariance of the process 

noise, the covariance of the observation noise; and sometimes 
the control-input model for each time-step  k , Fk, Hk , Qk, 
Rk, Bk, respectively as described further. 

The KF model assumes the state  at (k − 1) helps in measuring the true 
state at time k . 

 

Where 

 Fk is the state transition state space model  and it is 

applied to the previous state xk−1; 

 Bk is the control-input state space model and it is 

applied to the control vector uk; 

 Wk being t h e  process noise and is d r a w n  

from a multivariate normal distribution with zero 
mean and covariance Qk. 

 

 

An observation zk   of the true state xk   time k is made 

according to 

 

Here Hk is the observation state space model 

which helps in mapping the observed space from true space 
and vk is the observation or measurement noise (Gaussian 

white noise) with zero mean and covariance Rk.  

 

Starting from the initial states to the noise vectors at each step 
are mutually independent. 

 

3. EXTENDED KALMAN FILTER 

As we know the real systems that are inspiration for 
all these estimators like Kalman Filter are governed by non-
linear functions. So we always need the advanced version of 
the Filters that are basically designed for linear filters. 
Similarly it is said that in estimation theory, the extended 
Kalman filter (EKF) is the nonlinear version of the 
Kalman filter.  This non-linear filter linearizes about the 
current mean and covariance. At one time, the EKF might 
have been considered the standard in the theory of 
nonlinear state estimation navigation systems and GPS. 
However, as described below, with the introduction of the 
Unscented Kalman filter (UKF), the EKF might not enjoy the 
status of being the standard filter as the UKF is more robust 
and more accurate in its estimation of error. 

3.1 Formulation 
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In the EKF, the state transition and observation state 
space models may not be linear functions of the state but 
might be many non-linear functions. 

 

 

 

Where wk and vk are the process and observation 

noises which are both assumed to be zero mean multivariate 

Gaussian noise with covariance Qk and Rk respectively.The 

functions f and  h  use the previous estimate and help in 
computing the predicted state and again the predicted state is 
used to calculate the predicted measurement. However, f and 
h cannot be used to the covariance directly. So a matrix of 
partial derivatives (the Jacobian) computation is 

required.At each time step with the help of current predicted 

states the Jacobian is calculated. These matrices are used in 
the KF equations. This process actually linearizes the non-
linear function around the present estimate.                                                  

Predicted state 

 
 

Predicted estimate covariance 

 
 

Innovation or measurement residual   

 
  

Innovation (or residual) covariance    

 

  

Optimal Kalman gain 

 
 

Updated state estimate  

 

  

Updated estimate covariance  

 
 

Where the state transition and observation matrices are 
defined to be the following Jacobians 

 

 

The key to using an EKF is to be able to represent 
the system with a mathematical model. That is, the EKF 
designer needs to understand the system well enough to be 
able to describe its behaviour with differential equation. In 
practice, this is often the most difficult part of implementing 
a Kalman filter. Another challenge in Kalman filtering is to be 
able to accurately model the noise in the system. 

In the presence of non-linear functions the predicted 
states are approximated as  the function of prior mean. The    
covariances are determined by linearizing the dynamic 
equations 

 

a n d  t h e n  t h e  p o s t e r i o r  c o v a r i a nc e  
m a t r i c e s  a r e  determined analytically for the linear 
system in EKF approach. In case of the EKF, a GRV is 
determined approximating the state distribution and then this 
GRV is propagated analytically through the ``first-order'' 
linearization of the nonlinear system. In this case the EKF can 
be credited  with  providing  ``first-order''  approximations  to  
the  optimal  terms such  as  optimal prediction, optimal gain. 
But these approximations are not helpful always. Where the 
non- linearity value is more it can even introduce large errors 
in the true posterior mean as well as in the covariance of the 
transformed (Gaussian) random variable. This is not being a 
healthy approach to linearization might lead to sub-optimal 
performance and sometimes divergence (instability) of the 
filter. It is these ``flaws'' which will be amended in the next 
section using the UKF.  

4.UNSCENTED KALMAN FILTER (UKF): 

When the state transition and observation state space 
models – the predict and update functions f and h are 
highly non-linear, the EKF cannot give up to the mark 
performance because the linearization of the underlying 
non-linear model propagates the covariance. Although EKF 
is straightforward and simple it suffers from instability due 
to linearization and erroneous parameters, costly calculation 
of Jacobean matrices, and the biased nature of its estimates. 
The UKF is considered in this paper to overcome the 
disadvantages of EKF.The UKF belongs to the family of 
sigma-point filters and uses an unscented transformation that 
computes the statistics of a random variable undergoing 
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nonlinear transformation.The main advantage of UKF is that 
it does not use linearization for calculating the state 
predictions, covariance matrices and thus it provides accurate 
Kalman gain estimates. Instead of linearizing the Jacobean 
matrices, the UKF uses a deterministic sampling approach to 
capture mean and covariance estimates with a minimal set of 
2 L + 1, sigma points (L is the state dimension) based on a 
square-root decomposition of the prior covariance. These 
sigma points are propagated through the nonlinearity, 
without approximation, and a weighted  mean and 
covariance is found. Like the EKF, the UKF uses a recursive 
algorithm that uses the system  model, measurements, and 
known statistics of the noise mixed with the signal. The UKF 
was originally designed to estimate the states of a dynamic 
system and for nonlinear control applications. 

The UKF update can be used independently in the 
UKF prediction in co-ordination with a linear update. The 
mean and covariance of the process noise is used in 
increasing the estimated state and covariance. 

 

 

 

 

The augmented state and covariance assist in 
derivation of a set of 2L+1 sigma points and L is the 
dimension of the augmented state. 

 

 

 

 

 

 

 

And 

  

Is the ith column of the matrix square root of 

 

 The Cholesky decomposition method should be 
used for the calculation of matrix square root.Because this 

method is numerically efficient and stable.The transition 
function f helps in propagating the sigma points. 

 

The predicted state and covariance are produced by 
recombination of the weighted sigma points. 

 

 

 

And the weights for the state and covariance are given by: 

 

 

 

 

Αa and κ control the spread of the sigma points. β is related to 

the distribution of x. Normal values Are α = 10 
− 3

, κ = 0 and β 
= 2. If the true distribution of x is Gaussian, β = 2 is 

optimal.The  same  augmentation  of  the  predicted  state  

and  covariance  is  done  with  the  mean  and Covariance of 
the measurement noise. 

5.COMPARISON OF KALMAN FILTER 
ESTIMATION APPROACHES 

5.1 General and Linear State Space Model 

The most general form of state space model is the 
non-linear model. The models are basically consist  of  two  
function  f  and  h  which  govern  the  state  propagation  and  
measurements respectively. w and v are the process and 
measurement noises respectively, u is the process input and k 
is the discrete time. 

 

This is the actual model where as the linear state-
space model is the model where the functions f and h are 
both linear in state and input. The function then can be 
expressed using matrices F, B and H, reducing state 
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propagations to linear algebra casing easier calculation and 
analysis. The model equations can be written as: 

 

 5.2 Kalman Filter 

Certain constraints on the process model can make the 
estimation problem easier. The constraints in case of Kalman 
filter are both the functions f and h are to be linear, noise terms 
w and v uncorrelated, Gaussian and white with zero mean.  
The model being linear and input being Gaussian we have the 
knowledge that the output will also be Gaussian. The state 
and output pdf will therefore always be normally 
distributed and the knowledge of mean and covariance will 
suffice .Estimation using Kalman filter is easier as it 
incorporates almost all linear calculation except a matrix 
inversion 

5.3 Extended Kalman Filter 

Almost all real life process is non-linear and 
needed to be linearized before they can be estimated by 
means of a KF. By calculating the Jacobian of f and h 
around the estimated state, this problem of non-linearity is 
solved by EKF. The calculation of Jacobian yields a trajectory 
of the model function centered around the state.  

                       

Fig-1. EKF linearizing a non-linear function around the mean of  
a Gaussian distribution 

 

5.4 Unscented Kalman Filter 
Propagation of GRV through non-linear functions 

cause trouble many times and by applying a new technique 
called the unscented transform it can be solved. Ins tead 
of linearizing a non- linear function it uses 2N+1 sigma 
points for N states and then propagates these points 
through the actual non-linear function, eliminating 
linearization altogether. The points are chosen such that 
their mean, covariance as well as other higher order moments 
also match the GVR. These propagated points help in 
recalculating the mean and covariance yielding more 
accurate results compared to ordinary function 
linearization.   

The underlying idea is to approximate the 
probability distribution instead of the function. This strategy 
helps in decrement in computational complexities at the same 
time increasing estimation accuracy, gaining faster and more 
accurate results. 

 

 

Fig-2. Example of mean and covariance propagation 

The unscented transform approach provides another 
advantage of t r e a t i n g  noise in a nonlinear fashion to 
account for non-Gaussian or non-additive noises. For doing 
so firstly noise is propagated through the functions by first 
augmenting the state vector including the noise sources. This  
technique  was  first  introduced  by Julier  and  later  
developed  by  Merwe.  Sigma point samples are then 
selected from the augmented state xa, which includes the 

noise values. This technique results in the accuracy of 
process and measurement noise capture with same accuracy 
as that of the state, which in turn increases the accuracy for 
non-additive noise sources. 

 

Fig-4.  UKF  propagating  sigma  points  from  a  Gaussian  distribution  
through  a  non-linear function 

6. ESTIMATTION OF HARMONICS USING 
EXTENDED AND UNSCENTED  KALMAN FILTER  
METHODOLOGY AND  SIMULATION RESULTS: 
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Firstly a static signal as given below is modelled with 
the help of EKF and UKF algorithms.The test signals with 
these non-linearities and the Gaussian noise is used as the 
process and estimation of the amplitude is carried out with 
the help of EKF and UKF methods. The estimated and the 
original signal and a comparison between them are given in 
the following section. In case of EKF the mean square error is 
calculated for the estimated signal. 

Xk=(sinxk)+exp(xk)+wk 

Consider a signal consisting of M sinusoids which 
can be modelled as given below. 

 

Where Aik, wi, Фi, tk and vk a r e  amplitude, 

frequency and phase of the i- th sinusoid respectively and tk 
is the k-th sample of the sampling time and vk is a zero mean 

Gaussian white noise. 

In this paper a signal like this has been used but keeping 

amplitude 1p.u. and frequency 50Hz and phases 0
o  

and 
generating process and measurement noises with the help 

of random number generator. The amplitude and frequency 

estimation has been done of the signal starting from 

fundamental frequency signal to 3
rd

, 5
th 

and 7
th 

harmonic 
signal. Both the original and estimated voltage amplitude 
value and frequency values have been compared. 

 

 

 

   (a) 

Fig- 5(a) Extended Kalman Filter Output 

     (b)  Mean Square Error in Extended Kalman Filter 

     (c)  Unscented Kalman Filter Output  estimation 

         (d) Fundamental Amplitude And Frequency Estimation using Ukf 

         (e) Fundamental amplitude and frequency estimation using UKF 

         ( f)  3
rd 

Harmonic amplitude estimation using UKF 

   (g) 5
th   

Harmonic amplitude and frequency estimation using UKF 

      (h) 7
th 

Harmonic Aplitude Estimation (Ukf) 

      (i)  7
th   

Harmonic amplitude and frequency estimation  using UKF 

    

 

                                          (b) 
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                                                  (c)   

 

                                        (d)   
 

 

 

                                                    

       (e) 

 

 

 

 

(f)  
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                                                (g)  

 

                                                   (h) 

  

 

 

 

                                   (i)   

 

First we briefly introduce the concept of discrete-time state 
space models. After that we consider linear, discrete-time state 
space models in more detail and review Kalman filter, which 
is the basic method for recursively solving the linear state 
space estimation problems.  After that the function of Kalman 
filter   its usage in this toolbox in demonstrated with one 
example (CWPA-model).Next we move from linear to 
nonlinear state space models and review the extended Kalman 
filter, which is the classical extension to Kalman filter for 
nonlinear estimation. 

The usage of EKF in this toolbox is illustrated exclusively with 
one example (Tracking a random sine signal), which also 
compares the performances of KF, EKF and UKF. After EKF 
we review unscented Kalman filter, which is a  extension to 
traditional Kalman filter to cover nonlinear filtering problems.  

6. CONCLUSION  

The problem of estimating frequency 
and amplitude parameters of sinusoidal signal in 
white noise in radar, nuclear magnetic resonance, 
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power networks etc., have been extensively studied. 
By comparing KF, EKF & UKF , the main advantages of 
the unscented transformation used in UKF is that it does not 
use linearization for computing the state and error covariance 
matrices resulting in a more accurate estimation of the 
parameters of a nonstationary signal. However its  accuracy 
significantly reduces if the SNR is low and the noise 
covariance and some of the parameters used in the unscented 
transformation are not chosen correctly.Therefore considering 
the above drawback of  EKF, it is proposed to use  adaptive 
particle swarm optimization technique in best signal tracking 
performance ,it  is found to be superior to the conventional 
particle swarm optimization (PSO) for the optimal choice of 
UKF parameter and error covariances. This results in better 
local and global searching ability of the particle which in turn 
improves the convergence of the velocity and better accuracy 
of the unscented Kalman filter.  
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